Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space, Phase I

Completed Technology Project
351 views

Project Description

A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space, Phase I
Both pyrolysis and oxidation steps have been considered as the key solid waste processing step for a Controlled Ecological Life Support System (CELSS). Pyrolysis is more amenable to handling mixed solid waste streams in a microgravity environment, but produces a more complex product stream. Oxidation (incineration) produces a simpler product stream, but the oxidation of mixed solids is a complex unit operation in a microgravity environment. Pyrolysis is endothermic and requires no oxygen, while oxidation is exothermic and requires oxygen. A previous NASA SBIR Phase I and Phase II project has successfully integrated pyrolysis of the solid waste and oxidation of the fuel gases into a single, batch processing prototype unit. This Small Business Innovation Research Phase I project addresses the feasibility of integrating pyrolysis, tar cracking, and oxidation steps into a compact, efficient system for processing of spacecraft solid wastes. This integration will result in a reduction in energy consumption, an overall reduction in system complexity, and a lower Equivalent System Mass (ESM). The objective of the Phase I study is to demonstrate the feasibility of this integration process using bench scale experiments. This will be accomplished in three tasks: 1) design and construct integrated bench scale unit; 2) laboratory studies using simulated solid waste sample; 3) evaluation of laboratory results and preliminary design of Phase II prototype. More »

Primary U.S. Work Locations and Key Partners

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^