The development of a polymer laminate with water and oxygen barrier properties suitable for food packaging and preservation on 3-5 year manned space exploration missions is proposed. The laminate is a multilayer structure comprising polymer and inorganic dielectrics that will provide near-hermetic encapsulation of food items for the duration of these missions. In Phase I, flexible polymer barriers with an oxygen transport rate of <0.005 cc/m2-day and water transport rate of <0.005 g/m2-day were developed. The barriers contain no metal foils, have a areal density of <34 g/m2 for a 40 micron thick film, and tolerate high temperature sterilization treatments. The polymer laminates are mechanically robust exhibiting a 165MPa yield strength, 200MPa tensile strength, 550MPa tensile modulus, and 3% elongation to yield. In Phase II, we propose to optimize barrier properties to reduce weight, minimize ash on incineration, develop heat-sealing methods, and expand the testing to include heat sealed enclosures. The Phase II effort also includes a collaboration with a potential high-volume manufacturer of the barrier films for aerospace applications.
More »