Thermal management is a critical aspect of various high power devices for future NASA missions. The energy generated by electronic devices dissipates into the ambient environment through heat sinks or heat spreaders. Effective heat conduction requires good thermal contact between heat sinks and electronic packages. Thermal contact resistance arises from the microscopic lack of planarity and micro-roughness of the mating surfaces. When two surfaces are brought into contact, the actual contact area is usually much smaller than the apparent contact area, resulting in a thermal barrier at the interface. The problem becomes even more severe in vacuum and low temperature environments. Therefore, high thermal conductivity and vacuum compatible thermal interface materials are crucial to thermal control of electronic devices in space applications. The proposed thermal interface technology is believed to be applicable to many uses in thermal management. It may be used at the interface between electronic devices and heat spreaders, to attach thermometry, heaters, etc. Being electrically conductive to some extent, it could also be used to form electrical connections. Further, it could be used to quickly attach items without the use of adhesives and to attach items in locations that might otherwise be difficult or impossible to achieve. Avoiding adhesives also eliminates the outgassing of various vapors over time.
More »