When solar energy is used in aerospace applications, the necessary shadowed parts of the spatial orbit require energy storage for the craft/equipment to continue in operation. Batteries are used for the purpose currently, but with increasing power requirements, more efficient charge storage devices have to be developed. Energy storage technologies are expected to have improved energy density, speed, efficiency, or wide-temperature operation (-125
oC to over 450
oC) with a high cycling stability. Supercapacitors or ultra-capacitors are known to exhibit high capacity and power storage characteristics but they suffer from low energy density compared to rechargeable battery systems. Newly developed "asymmetric" capacitors are hybrid charge-storage devices in which a Faradaic, rechargeable battery-type electrode is combined with a non-Faradaic, electrochemical, double-layer type of electrode. It is possible to reach very high working voltage and high energy density by the right choice of electrode material. Materials Modification Inc. proposes to develop a novel nanocomposite material to function as the high-specific capacitance electrode in an asymmetric capacitor. Phase I will involve fabricating the electrode material and testing its electrochemical properties by standard means. Phase II will involve fine tuning the technology to fabricate actual supercapacitors for field testing.
More »