Skip Navigation
SBIR/STTR

High-Fidelity Simulation of Turbofan Noise, Phase I

Completed Technology Project

Project Introduction

High-Fidelity Simulation of Turbofan Noise, Phase I
Broadband fan noise -- closely tied to turbulent flow on and around the fan blades -- represents a key challenge to the noise reduction community due to the interaction of a highly turbulent flow field with complex, moving geometries. Prediction and high-fidelity simulation of fan noise demands a fundamental innovation in CFD methods due to moving geometries and accuracy requirements. The objective this work is to develop a flexible approach to handling multiple, overset grids for use in simulations of turbomachinery. In Phase 1 we will develop an innovative computational software tool for efficiently managing multiple, overlapping structured meshes in relative motion. This application will be used concurrently with a compressible Navier-Stokes solver and is an enabling technology in enabling high-fidelity simulations of turbulent flows in complex, moving geometries. Phase 1 will demonstrate software feasibility using a simplified model of the NASA Glenn Source Diagnostic Test (SDT) fan at realistic take-off conditions. We propose a simulation that includes a moving "rotor" blade row adjacent to a static blade row. Tailored post-processing of simulation results will provide information on the turbulent flow -- and implied turbulent noise sources -- including unsteady blade surface pressures, acoustic modes, and overall radiated noise. In Phase 2 we focus primarily on broadband turbulent noise sources of modern turbofan engines. By utilizing a realistic NASA SDT fan geometry and take-off flow conditions, we will use our new tools to simulate real-world systems and commercialize our software product. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^