Skip Navigation
SBIR/STTR

Lightweight Hybrid Ablator Incorporating Aerogel-Filled Open-Cell Foam Structural Insulator, Phase I

Completed Technology Project

Project Introduction

Lightweight Hybrid Ablator Incorporating Aerogel-Filled Open-Cell Foam Structural Insulator, Phase I
In previous work for NASA and DoD, Ultramet developed lightweight open-cell foam insulators composed of a carbon or ceramic structural foam skeleton filled with a high temperature nanoscale aerogel insulator. The structural integrity and high insulation behavior have been demonstrated when used in combination with a non-ablating, coated carbon/carbon or ceramic matrix composite outer shell. The potential exists to develop a hybrid ablator/insulator thermal protection system in which a portion of the thickness of a low conductivity, structural foam aeroshell is infiltrated with an ablative material (frontface) and the remaining thickness is filled with the high temperature aerogel insulator (backface). The potential benefit is a reduction in ablator mass required to reject the aerothermal heat load. The vehicle interface temperature will be controlled by the aerogel-filled portion of the foam structure, rather than by ablator thickness, thereby allowing the use of less ablator material. The reduced volume needed will allow use of a conventional high density, high heat flux capability ablator, offering greater mission flexibility. In this project, Ultramet will team with Materials Research & Design for preliminary thermomechanical design work and will construct a ceramic foam-reinforced hybrid ablator/insulator. Preliminary performance will be established through hot-gas testing. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^