Skip Navigation
SBIR/STTR

Synthetic Imaging Maneuver Optimization (SIMO), Phase II

Completed Technology Project

Project Introduction

Synthetic Imaging Maneuver Optimization (SIMO), Phase II
Aurora Flight Sciences (AFS), in collaboration with the MIT Space Systems Laboratory (MIT-SSL), proposed the Synthetic Imaging Maneuver Optimization (SIMO) program to develop a methodology, calibrated through hardware-in-the-loop testing, to optimize S/C maneuvers to more efficiently synthesize images for missions such as Stellar Imager (SI). Time and fuel-optimal maneuvers are only a part of the optimization problem. Selecting the maneuver waypoints (number and location) determines the quality of the synthesized image. The number of S/C, the size of the sub-apertures, and the type of propulsion system used also impacts imaging rate, propellant mass, and mission cost. Capturing all of these mission aspects in an integrated mission optimization framework helps mission designers to select the most appropriate architecture for meeting the needs and constraints of missions such as SI. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^