Skip Navigation
SBIR/STTR

Low Power Universal Direct Conversion Transmit and Receive (UTR) RF Module for Software Defined Radios, Phase I

Completed Technology Project

Project Introduction

Low Power Universal Direct Conversion Transmit and Receive (UTR) RF Module for Software Defined Radios, Phase I
Conventional software defined radio (SDR) backend signal processors are limited by apriori system definitions and respectively chosen RF hardware. Ideally, the RF sections would be as flexible as the software backends, accommodating widely differing bands and modulation long after fabrication and mission launch; conventional RF tuners limit SDR space mission reconfigurability. The innovation provides a post-launch universal direct RF transmit and receive modulator/demodulator module (UTR) One UTR can replace band specific RF devices otherwise needed for future missions. UTR's modular open architecture is as "reconfigurable" as its complementary digital SDR baseband processing (ADC/DAC's, FPGA's, DSP's). The UTR facilitates communications, radar, narrow (bps) to ultrawideband (GHz) modulation, center frequencies scalable >100 GHz, herein UHF to Ka band. No DC power required for receive mode; novel wideband digital "DAC-less" direct to RF BPSK/QPSK modulation and power amplification is possible. Rugged, radiation hard, reliable due to low active component count and mainstream manufacturing techniques (GaAs MMIC based). Enhanced performance and size leveraged via left handed metamaterials, MEM's switches, GaN and tunable ferroelectrics. Phase 1 UTR simulations, analysis and manufacturing preparation is followed by phase 2 UTR module fabrication (deliverable) and subsystem performance demonstration. TRL 5 expected at phase 2 completion. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^