Skip Navigation
SBIR/STTR

Thermally Conductive Tape Based on Carbon Nanotube Array, Phase I

Completed Technology Project

Project Introduction

Thermally Conductive Tape Based on Carbon Nanotube Array, Phase I
Future NASA missions require thermal control systems that can accommodate large changes in ambient temperature. The two essential aspects of an effective thermal interface material (TIM) are high compliance and high thermal conductivity. Thermal interface materials (TIM) are often used to fill the cavities between mating surfaces to increase the thermal conductance across the interface. Traditional TIMs are polymer based composites such as thermal grease or paste. The nature of polymer matrices makes them inapplicable under vacuum and in a cryogenic environment. The goal of the proposed research is to develop a flexible thermally-conductive tape. The proposed innovation forms a versatile, vacuum-proof, thermally conductive tape. The tape is pliable and should conform to the contours of the interface. Carbo nanotubes bridge the two mating surfaces, thereby effectively conducting heat across the interface. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^