Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

An Optical Wake Vortex Detection System for Super-Density Airport Operation, Phase I

Completed Technology Project
553 views

Project Description

An Optical Wake Vortex Detection System for Super-Density Airport Operation, Phase I
OSI proposes to develop a wake vortex detection system including a group of double-ended and single-ended optical scintillometers properly deployed in the airfield to measure ground and near ground crosswind, turbulence, and wake vortex using atmospheric turbulence-induced optical scintillations. As part of efforts, OSI also proposes to develop a single-ended optical scintillometer, together with a retro-reflector, for the measurement of near ground real-time crosswind and wake vortex. OSI will perform system analysis and design of the proposed system to detect occurrences, location, magnitude, and persistence of wake turbulence. With the simultaneous measurements of crosswind and turbulence, the sensor system is also able to forecast the arrival time of the airplane generated wake vortex drifting to a nearby runway. In the Phase I effort, OSI will determine the optimum siting criteria of deploying the double-ended and single-ended sensors on the airport. This includes combinations of parallel to runway, cross the runway, and retro-reflector on high towers installations. The goal is to form a network of sensors to cover essential areas of airport field to provide wake vortex data for the predictive modeling of wake vortex hazard. As a side benefit, the vortex detection system could measure downdraft by deploying two sets of scintillometers on both sides of the runway. The line-averaged crosswind measured by the two sets will provide real-time continuous measurements of convergence and divergence of the wind field between the two optical paths. Vertical winds, and hence the downdraft, can be derived from the measured divergence. The proposed vortex detection system will also be able to provide critical large area wind information. By incorporating this valuable information into the low-level wind shear modeling, it will greatly enhance the performance of the present airport low-level wind shear systems. More »

Primary U.S. Work Locations and Key Partners

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^