Skip Navigation
SBIR/STTR

Tissue-Equivalent Radiation Dosimeter-On-A-Chip, Phase I

Completed Technology Project

Project Introduction

Tissue-Equivalent Radiation Dosimeter-On-A-Chip, Phase I
Many commercially available digital dosimeters are bulky and are unable to properly measure dose for space radiation. The complexity of space flight design requires reliable, fault-tolerant equipment with the capability of providing real-time dose readings during a mission, which is not feasible with the existing thermo-luminescent dosimeter (TLD) technology. The project will create a compact, lightweight, energy-efficient dose meter comprised of a tissue-equivalent scintillation crystal coupled to a solid-state photomultiplier (SSPM), which is an array of CMOS photodiodes, operated in Geiger avalanche mode. The ubiquitous nature of CMOS technology provides a standardized development platform, and the ability to integrate all the supporting electronics into a miniature, simple design. In Phase I, we will model the expected dosimeter performance and characterize the performance of a prototype dosimeter exposed to high-energy protons, which simulates radiation in the space environment. We will also determine the TLD-dose equivalence of our measurements. In Phase II, we will create the support software and design and fabricate a finalized chip that includes readout electronics, power supply, memory storage, and other interfacing components. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^