Available digital dosimeters are bulky and unable to provide real-time monitoring of dose for space radiation. The complexity of space-flight design requires reliable, fault-tolerant equipment capable of providing real-time dose readings during a mission, which is not feasible with the existing thermo-luminescent dosimeter (TLD) technology, especially during extravehicular activities (EVA). Real-time monitoring is important for low-Earth orbiting spacecraft and interplanetary space flight to alert the crew when Solar Particle Events (SPE) increase the particle flux of the spacecraft environment. The Phase-II project will design and fabricate a prototype Dosimeter-on-a-Chip (DoseChip) for personal dosimetry comprised of a tissue-equivalent scintillation crystal coupled to a solid-state photomultiplier (SSPM). The ubiquitous nature of CMOS technology provides a standardized development platform, and the ability to integrate the supporting electronics into a miniature, lightweight design. The DoseChip provides a tissue-equivalent response to the relevant energies and types of radiation for low-Earth orbit and interplanetary space flight to the moon or Mars and will be sensitive to the dose rates and particle fluxes of ambient Galactic Cosmic Rays (GCR) to the higher rates of major SPE. The DoseChip will complement the existing Crew Passive Dosimeters by providing real-time dosimetry and as an alarming monitor for SPE.
More »