Skip Navigation
SBIR/STTR

Electrospray Collection of Airborne Contaminants, Phase II

Completed Technology Project

Project Introduction

Electrospray Collection of Airborne Contaminants, Phase II
In stark contrast to current stagnation-based methods for capturing airborne particulates and biological aerosols, our demonstrated, cost-effective electrospray technology employs an entirely different approach based on the remarkable effectiveness of small, highly charged liquid droplets formed from an electrospray source to "getter" both particles and polar molecules dispersed in a gas. Less capable and expensive collection system technologies are generally based on stagnation of high velocity ambient airflow on a collecting surface. The momentum of particles and heavy molecules precludes their following gas streamlines during this stagnation. Instead, they concentrate and are trapped on the detector's surface if the surface is "sticky," or concentrated in the surface boundary layer, which can be separated from the mainstream flow and collected. Typically, current separation methodology collects about 50 percent of the particles between 1.0 and 10 microns in diameter from a flow of 500 L/min with a power consumption of up to 500 watts; i.e., about 1 watt of power is required for a small fan to compress 1 liter of air per minute to produce the high velocity airflow necessary for effective trapping of small bio-particles and heavy molecules. However, our electrospray technology consumes negligible power and achieves virtually 100 percent particle collection. In fact, we have demonstrated that the power efficiency of electrospray gettering for a single electrospray emitter to collect 100 percent of the particles, often without a fan, at 10,000 times greater than the power efficiency of state of the art systems. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^