Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Advanced SiC-Matrix Composites with Improved Oxidation Resistance and Life, Phase I

Completed Technology Project

Project Introduction

Advanced SiC-Matrix Composites with Improved Oxidation Resistance and Life, Phase I
The objective of this proposed effort is to demonstrate the promise of advanced C/SiC and SiC/SiC composites having improved environmental durability and longer life at higher allowable stress levels without using problematic external barrier coatings. Both oxidation inhibited C/SiC and SiC/SiC composite material systems are proposed for this effort on the basis that: (1) C/SiC offers the highest use temperature and lowest cost of all currently available refractory composite systems, and (2) SiC/SiC offers the highest durability and longest life. Each material system offers unique performance/cost benefits and limitations, and each has been identified as a viable candidate for advanced propulsion and thermal protection system component applications. Oxidation resistant C/SiC and SiC/SiC composite plates will be fabricated incorporating a recently developed, 2nd generation oxidation inhibited matrix produced by chemical vapor infiltration (CVI). Test samples from each material system will be prepared and experimentally evaluated in high-temperature tensile stress oxidation environments. The tensile stress rupture results will be compared to "baseline" uninhibited C/SiC and SiC/SiC composites to establish the performance benefits of the proposed approach. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Areas

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.