Skip Navigation
SBIR/STTR

Programmable High-Rate Multi-Mission Receiver for Space Communications, Phase I

Completed Technology Project

Project Introduction

Programmable High-Rate Multi-Mission Receiver for Space Communications, Phase I
Current and upcoming NASA space links require both highly reliable low-rate communications links supporting critical TT&C, ranging and voice services and highly efficient high-data rate links supporting Mission or Payload Data return. Both are important to the success of a mission and for many ongoing missions rely on aging ground element equipment. Investing in re-usable elements, such as Programmable Communications Radios, for ground and flight data handling that are capable of receiving both highly-reliable low-rate links and highly-efficient high-rate links would address current Communication and Navigation needs without foregoing future capabilities. Current receiver designs typically address either high-rate or low-rate requirements but not both. NASA has requested a high-rate receiver capable of receiving coded and un-coded highly efficient modulation schemes supporting data throughput greater than 300Mbps. The proposed Phase I effort by Summation Research, Inc. (SRI) will develop, load, characterize and optimize these high-efficiency CCSDS and related modulations on a modern, high speed digital processing platform that can also support lower rate TTC and related links. Phase II work would then implement an analog IF front-end, develop deployable digital hardware to replace the evaluation boards used in Phase I, and combine the elements in an innovative Programmable High-rate Multi-mission Receiver (PHMR). More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^