Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Infiltration of Carbon Foam for Mid-Density Ablative Thermal Protection Systems, Phase I

Completed Technology Project

Project Introduction

Infiltration of Carbon Foam for Mid-Density Ablative Thermal Protection Systems, Phase I
This proposal addresses NASA's need for improved TPS materials. The incumbent CEV heatshield TPS for Orion's Block II lunar return is PICA, a low-density carbon fiber infiltrated with phenolic resin. Variants of PICA with improved thermomechanical properties would benefit future missions. This effort will create a series of "mid-density" ablative materials to fill the gap between low-density PICA and high-density Carbon-Carbon. Touchstone's carbon foam (CFOAMREG) has excellent thermomechanical properties, can be tailored to a range of densities (12 to 95 lbs/cu-ft), and has an open-cell structure allowing infiltration of high-temperature materials. Aspen Aerogels recently completed a Phase II subcontract with Touchstone demonstrating the capability of fully infiltrating CFOAMREG with phloroglucinol-furfuraldehyde carbon aerogels with chemistry similar to PICA's. Phase I will use carbon aerogel infiltration in CFOAMREG samples of 3 densities from 17 to 35 lb/cu-ft to be calcined at Touchstone to carbonize the aerogel, creating a mass of amorphous carbon within the pore structure. Filling CFOAMREG pores with pure carbon yields an inherent reduction in the TPS radiant heat transfer. Fully carbonized samples will be re-infiltrated with PICA phenolic resin, and sample characterization will be conducted via SEM to demonstrate the capability of producing small-scale Carbon Foam-Aerogel/Phenolic composites at various densities. At the end of Phase I, the TRL will be 3-4 and then 4-5 by the conclusion of Phase II. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Areas

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^