Skip Navigation
SBIR/STTR

Transpiration Cooled Thrust Chamber Technology, Phase II

Completed Technology Project

Project Introduction

Transpiration Cooled Thrust Chamber Technology, Phase II
NASA has determined that it requires extremely durable, high-performance, low cost engines to meet future multi-use in-space, non-toxic, cryogenic propulsion requirements such as orbit transfer, descent, ascent and pulsing attitude control. Transpiration-cooling technology has long been considered a candidate for long-life thrust chambers but has never been deployed on a domestic rocket engine. In this program WASK Engineering, Inc. proposes to design, fabricate and hot-fire test a 100 lbf reaction control engine (RCEs) with transpiration-cooled thrust chambers and novel injector design. This effort will build on the technology demonstrations achieved on our Phase I program. These new transpiration-cooled O2/CH4 RCEs will be tested in existing atmospheric (non-vacuum) test facilities on an existing and operational test stand. Test results will be used to anchor and refine existing transpiration cooling thermal/performance analysis models. Ultimately, results of this Phase II program will lead to a durable, low cost, non-toxic RCE technology capable of using in situ propellant combinations, particularly oxygen/methane that will have higher performance than current toxic, expensive, storable hypergolic RCE designs using rhenium-based thrust chamber technology. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^