Skip Navigation
SBIR/STTR

Transpiration Cooled Thrust Chamber Technology, Phase II

Completed Technology Project

Project Introduction

Transpiration Cooled Thrust Chamber Technology, Phase II
NASA has determined that it requires extremely durable, high-performance, low cost engines to meet future multi-use in-space, non-toxic, cryogenic propulsion requirements such as orbit transfer, descent, ascent and pulsing attitude control. Transpiration-cooling technology has long been considered a candidate for long-life thrust chambers but has never been deployed on a domestic rocket engine. In this program WASK Engineering, Inc. proposes to design, fabricate and hot-fire test a 100 lbf reaction control engine (RCEs) with transpiration-cooled thrust chambers and novel injector design. This effort will build on the technology demonstrations achieved on our Phase I program. These new transpiration-cooled O2/CH4 RCEs will be tested in existing atmospheric (non-vacuum) test facilities on an existing and operational test stand. Test results will be used to anchor and refine existing transpiration cooling thermal/performance analysis models. Ultimately, results of this Phase II program will lead to a durable, low cost, non-toxic RCE technology capable of using in situ propellant combinations, particularly oxygen/methane that will have higher performance than current toxic, expensive, storable hypergolic RCE designs using rhenium-based thrust chamber technology. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^