Skip Navigation
SBIR/STTR

Highly Effective Thermal Regenerator for Low Temperature Cryocoolers, Phase I

Completed Technology Project

Project Introduction

Highly Effective Thermal Regenerator for Low Temperature Cryocoolers, Phase I
Future missions to investigate the structure and evolution of the universe require highly efficient, low-temperature cryocoolers for low-noise detector systems. We propose to develop a highly efficient low-cost regenerator for regenerative cryocoolers with cooling temperatures in the range of 15 K and below. The proposed regenerator uses an innovative non-rare-earth material to achieve a volumetric specific heat of about 0.65 to 0.31 J/cm3-K at temperatures of 15 to 4.2 K. The large heat capacity will substantially reduce the thermal swing during periodic heat transfer and therefore improve the efficiency of low-temperature regenerative cryocoolers. The regenerator will be lightweight and easy to fabricate. In Phase I we will optimize the regenerator for a specific cooling application. We will use the resulting design and model to show that a regenerative cryocooler can achieve a very high efficiency. In Phase II we will build a prototype regenerator, measure its key performance parameters, and integrate it with an existing cryocooler to demonstrate its high thermal effectiveness. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^