Skip Navigation
SBIR/STTR

A Digital Correlation Spectrometer Chip with 1 GHz Bandwidth, 4096 Spectral Channels, and 4 W Power Consumption for Passive Microwave Remote Sensing Instruments, Phase I

Completed Technology Project

Project Introduction

A Digital Correlation Spectrometer Chip with 1 GHz Bandwidth, 4096 Spectral Channels, and 4 W Power Consumption for Passive Microwave Remote Sensing Instruments, Phase I
NASA's future Earth-Sun System missions require the rapid development of small, low-cost remote sensing instruments for the analysis of chemical and physical properties of planetary atmospheres. The objective of the proposed project (Phases I and II) is to research, develop, and demonstrate the first space-qualifiable digital correlation spectrometer on a single chip which, if successful, will reduce the risk, cost, size, and development time of microwave spectrometers and will enable space-science observations measurements that were not previously possible. The innovative approach proposed for achieving the objective consists of a synergistic combination of the following: (a) a unique parallel architecture that will reduce the operating clock frequency, relative to a single-stream architecture, by a factor of 2 and consequently will lower significantly the power consumption, (b) novel differential analog and digital circuits that will improve robustness while operating in the presence of total dose natural radiation found in the space environment, and (c) an advanced 0.13 um CMOS fabrication process with cooper interconnect, available at relatively low-cost through the MOSIS fabrication facility from IBM, for manufacturing high-performance, low-power, reliable, and robust (total dose radiation and latch-up resistant) space-qualifiable chips. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^