NASA's future Earth-Sun System missions require the rapid development of small, low-cost remote sensing instruments for the analysis of chemical and physical properties of planetary atmospheres. The objective of the proposed project (Phases I and II) is to research, develop, and demonstrate the first space-qualifiable digital correlation spectrometer on a single chip which, if successful, will reduce the risk, cost, size, and development time of microwave spectrometers and will enable space-science observations measurements that were not previously possible. The innovative approach proposed for achieving the objective consists of a synergistic combination of the following: (a) a unique parallel architecture that will reduce the operating clock frequency, relative to a single-stream architecture, by a factor of 2 and consequently will lower significantly the power consumption, (b) novel differential analog and digital circuits that will improve robustness while operating in the presence of total dose natural radiation found in the space environment, and (c) an advanced 0.13 um CMOS fabrication process with cooper interconnect, available at relatively low-cost through the MOSIS fabrication facility from IBM, for manufacturing high-performance, low-power, reliable, and robust (total dose radiation and latch-up resistant) space-qualifiable chips.
More »