Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

High Reliability Oscillators for Terahertz Systems, Phase I

Completed Technology Project

Project Introduction

High Reliability Oscillators for Terahertz Systems, Phase I
Terahertz sources based on lower frequency oscillators and amplifiers plus a chain of frequency multipliers are the workhorse technology for NASA's terahertz missions. The design and optimization of individual multipliers is fairly well understood. However, the complex interactions within a chain of nonlinear multipliers often limit the system performance. Specific manifestations of these interactions include rapid variations in power as the frequency or input power are tuned, including nulls and power surges that can damage individual components. These effects limit the useful bandwidth of terahertz sources, degrade system reliability and greatly increase the time and cost of developing systems for a particular application. Today, these problems are mitigated through the use of mechanical tuning or bias adjustments at each frequency, the laborious tweaking of each component in the chain until acceptable system performance is achieved, or reduction of the system bandwidth and/or power specifications. This proposal concerns the first systematic study of the complex interactions between cascaded nonlinear multiplier stages, with the goal of developing new multiplier and system designs that reduce these unwanted effects. The resulting terahertz sources will achieve greater efficiency, bandwidth, reliability and ease-of-use, as well as shortened system design cycles and greatly enhanced manufacturability. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Areas

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.