Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Lightweight Metal RubberTM Sensors and Interconnects, Phase I

Completed Technology Project

Project Introduction

Lightweight Metal RubberTM Sensors and Interconnects, Phase I
The objective of the proposed program is to develop lightweight and highly elastic electrically conducting interconnects and strain sensor arrays for next generation adaptive aerospace vehicles and structures. The systems-level problem this would solve is the inability of currently available materials to undergo the large strains and displacements associated with shape changes of morphing structures. NanoSonic will demonstrate the feasibility of the Metal RubberTM family of freestanding nanocomposite materials to serve as 1) electrically conductive, low modulus electrodes for large displacement mechanical actuators required to affect large shape changes, and 2) an integrated network of strain sensors to allow mapping of strain and determination of shape in adaptive structural components. Metal RubberTM is fabricated via layer-by-layer, molecular self-assembly, which enables thickness and placement control over multiple molecular constituents for true nanostructured multifunctionality. As an electrode material, new, ultra-low modulus Metal RubberTM can be strained to 1000% elongation while remaining electrically conductive; it returns to its original shape and nominal conductivity when released. As a strain sensor, strains up to 1000% have been measured in very highly flexible structures. During Phase I the feasibility of using such electrodes and strain sensors would be demonstrated in cooperation with a large aerospace company. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Areas

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.