Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Smart Crucibles and Heat Pipes, Phase II

Completed Technology Project
649 views

Project Description

Smart Crucibles and Heat Pipes, Phase II
For materials processing experiments in microgravity, crucibles comprised of an internal ceramic liner in direct contact with a metal reinforcement are desired to maximize heat transfer. Previous work has demonstrated the advantages of reinforced crucibles for producing samples with enhanced microstructural features compared to samples processed in conventional ampoule/cartridge assemblies. However, incorporation of thermocouples is limited to either inside the crucible cavity or on the external surface of the metal reinforcement. The science requirements of several NASA investigators prevent the placement of thermocouples in these locations. In addition, a failure detection technique based on the use of krypton gas is required on some microgravity furnaces. During this investigation, "smart" crucibles are being developed that incorporate thermocouple grooves and a reservoir for krypton gas storage within the crucible wall, i.e., intimate contact between all layers is maintained. These same techniques can be used to fabricate refractory metal heat pipes where the wick/capillary structure is an integral part of the structure. Currently, a heat pipe cooled nuclear reactor concept (SAFE-400) is being considered for advanced space power and propulsion systems. Such an advanced reactor configuration would enable near-tern ambitious space exploration. During Phase II, smart crucibles and heat pipes will be fabricated. More »

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^