Skip Navigation
SBIR/STTR

Improved High Efficiency MCPs for Detection of Photons and Large Biomolecules, Phase I

Completed Technology Project

Project Introduction

Improved High Efficiency MCPs for Detection of Photons and Large Biomolecules, Phase I
This SBIR Phase I proposes to investigate the use of proprietary coating materials to enhance the sensitivity, efficiency, and lifetime of microchannel plate (MCP) detectors. These detectors would be the basis for novel active layer multi dynode detectors for Time-of-Flight Mass Spectrometry as well as detectors of energetic photons. Previous work has led to the discovery that these materials have excellent potential for use as enhanced secondary electron emission yield (SEEY) coatings. We have observed up to a factor of three increase in SEEY from these coatings when compared to commercial detectors. High SEEYs are particularly crucial to the detection of high mass molecules: The low detection efficiency for large biomolecular ions is a major limitation of commercial MCP detectors. Furthermore, the materials under development have high thermal conductivity and sputtering resistance and are thus ideally suited for long life and high count rate detectors. Under this proposal, we intend to undertake a detailed investigation of the use of proprietary coating materials to improve on commercial MCPs. We will characterize the SEEY of these new detectors under the impact of mono-energetic ions, large biomolecules, and x-rays in order to test their potential use for high-mass MS energetic photon applications. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^