Skip Navigation
SBIR/STTR

Thermal Management of Superconducting Electromagnets in VASIMR Thrusters, Phase II

Completed Technology Project

Project Introduction

Thermal Management of Superconducting Electromagnets in VASIMR Thrusters, Phase II
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine currently being developed at NASA Johnson is an attractive technology for minimizing transit time and crew harm during future space exploration missions. One of the critical challenges in developing a flight engine is thermal management of the high-temperature, superconducting electromagnets used to constrain and accelerate the plasma. The innovation of the proposed project is a high-capacity turbo-Brayton cryocooler for this application. The cryocooler has heritage in the space-qualified cryocooler that was developed by Creare and installed on the Hubble Space Telescope. Turbo-Brayton cryocoolers are lightweight, compact, efficient, and highly reliable. The technology scales well to high cooling capacities and is simple to integrate with multiple cooling objects; attributes that are particularly beneficial for VASIMR systems. In Phase I, we developed a preliminary design of the thermal management system, addressing key issues regarding the application of turbo-Brayton cooling technology to VASIMR engines. In Phase II, we plan to build and demonstrate a brassboard thermal management system. Phase II is justified by the feasibility demonstrated in Phase I, by the relevance of the project to a development effort at NASA, and by the importance of this technology to NASA's goal of space exploration. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^