Skip Navigation
SBIR/STTR

High Energy, Low Temperature Gelled Bi-Propellant Formulation for Long-Duration In-Space Propulsion, Phase I

Completed Technology Project

Project Introduction

High Energy, Low Temperature Gelled Bi-Propellant Formulation for Long-Duration In-Space Propulsion, Phase I
Development of a candidate bi-propellant system consisting of a gelled hydrocarbon fuel coupled with a highly energetic gelled oxidizer suitable for outer planetary missions is proposed. Theoretical calculations suggest that this innovative combination can meet NASA's propulsion requirements for low power consumption (i.e. minimal use of heaters) while providing a vacuum specific impulse of ~ 360 seconds. Gelling the propellant provides the advantage of higher volumetric efficiency and suspending energetic fine particulates (e.g. boron, carbon, or aluminum) increases the energetic yield. Furthermore, gels do not spread if spilled and have greatly reduced vapor pressure making their handling far less hazardous, compared to current spacecraft fueling procedures that employ highly toxic liquid hypergols. The Phase I program objectives will include the 1) formulation of gel propellant fuel samples, 2) measurement of their rheological properties as a function of temperature, 3) simulation of a gel-fueled thruster propellant flow network using NASA's GFSSP code, and 4) high-fidelity simulations of the gel propellant tank expulsion process at outer planet equilibrium temperatures. The Phase II will include further properties assessments, high-fidelity simulations of the bi-propellant combustion process followed by experimental gel thruster test and evaluation. This innovation will improve the safety, operability reliability, and performance of in-space propulsion systems and extend the existing technology base for human and robotic exploration missions. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Areas

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^