Skip Navigation
Center Innovation Fund: LaRC CIF

Zero-Energy Ultrafast Water Nanofiltration System in Microgravity

Active Technology Project

Project Introduction

The goal of this program is to develop a water nanofiltration system that functions in microgravity for use during a long-duration human space exploration. The proposed nanofiltration system targets deep space crewed missions beyond low-Earth orbit (LEO) where it is impossible to launch fresh resupplies or carry sufficient mass and volume of life-sustaining equipment. Based on spontaneous surface-tension-driven flows, no external power is required to selectively transport water molecules through a nanostructured membrane. The speed of water transport through the membrane can be dramatically accelerated multiple orders of magnitude faster than prediction from conventional fluid-flow theory, while the confinement and electrostatic interactions lead to excellent salt rejection. The novelty of the microgravity filtration system includes zero-power consumption, ultrafast filtration, surface-tension-driven flow control in microgravity, excellent impurity rejection rate, lightweight, compact size, portability, recyclability and scalability. 

Current water filtration methods include distillation and membrane-based technologies. Both methods require a significant amount of energy. For example, reverse osmosis (RO), an energy-efficient membrane-based process, requires a fair amount of energy to apply 800-1000 psi across membrane filters. NASA tested a forward osmosis bag (FOB) on the ISS in an effort to provide a more energy-efficient solution. Despite lower power consumption (@ 25psi), the FOB required long filtration times (6 hours per 60 ml of a treated water sample), since it solely relies on a slow diffusion mechanism. Given limitations of energy and speed, a highly efficient filtration system is desperately needed for successful implementation of long-duration, deep space human exploration missions within the next 20 years. To achieve low power consumption and high speed, a new type of water filtration system is being researched on the basis of surface-tension-driven flows across a nanostructured membrane in microgravity.

More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.