Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Shock Hazard Prevention through Self-Healing Insulative Coating on SSA Metallic Bearings, Phase II

Completed Technology Project
316 views

Project Description

Shock Hazard Prevention through Self-Healing Insulative Coating on SSA Metallic Bearings, Phase II
The space suit assembly (SSA) contains metallic bearings at the wrist, neck, and waist, which are exposed to space environment, and pose a potential shock hazard. Current methods to mitigate the hazard are short-term, and there is a need for an insulative and durable coating on the metallic components. In Phase I, working with a supplier of space suits to NASA, we demonstrated proof-of-concept of a novel Self-Healing Coating (SHC) system which is highly insulative and is capable of healing surface damages at ambient conditions. The three-layered self-healing coating was applied on flat panels of stainless steel, titanium and aluminum. In addition to self-healing, the ability of the coating to resist impact damage was demonstrated. Building upon the successful Phase I demonstration, the focus of the Phase II effort will be to further test and optimize the SHC system and implement on a prototype metallic bearing. The Phase II objectives include: (i) ensuring that the self-healing coating system can be used in space environment; (ii) determining the least coating thickness that will provide both self-healing and electrical resistance; (iii) developing a suitable process for depositing the coating on components of different geometries; and (iv) developing a property and performance data set that best predicts useful life of the coating. Successful development will culminate in applying the SHC system on a prototype component and performing the needed qualification testing. We anticipate achieving a TRL of 6 by the end of the Phase II program. The work plan includes preparing coating solutions and coating flat test panels; conducting performance tests and optimizing coating thickness using coated plates; qualifying the SHC system for use in a space environment; developing a property and performance data set that best predicts useful life of the coating; applying SHC system to a prototype hardware; and evaluating performance of coating on prototype hardware. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^