Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Multiple High-Fidelity Modeling Tools for Metal Additive Manufacturing Process Development

Completed Technology Project
474 views

Project Description

Multiple High-Fidelity Modeling Tools for Metal Additive Manufacturing Process Development Project Image
Despite the rapid commercialization of additive manufacturing technology such as selective laser melting, SLM, there are gaps in process modeling and material property prediction that contribute to slow and costly process development, process qualification and product certification. To address these gaps, CFDRC and our partner Dr. Kevin Chou, University of Alabama, will develop multiple computationally efficient, high-fidelity simulation tools for the SLM process. During Phase I the team demonstrated efficient thermomechanical simulations for centimeter size test coupon builds, the feasibility of applying multiphase flow models to analyze particle scale effects on material variations, application of phase field models to predict microstructure evolution, and experimental characterization for model verification and refinement. During Phase II, the modeling tools will be extended to improve computational efficiency and scalability to aerospace component dimensions by further leveraging parallel computing and other acceleration techniques. The fidelity of the models will be enhanced to better predict distortion, residual stress, microstructure and defects from process conditions; and additional process data will be used to validate the resulting codes. The high-fidelity, physics based nature of the codes will allow straightforward application to new materials, and to guiding development of and verifying analytical physics models for process control. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^