Regolith excavation is a fundamental need of government and commercial endeavors on the Moon and Mars in establishing habitats, landing zones, observatories, roads and resource utilization facilities. The specific proposed technologies will enhance prospecting and excavating missions by enabling better prediction of subsurface volatiles to determine the regions of greatest value for sample acquisition and excavation. This has the potential to enhance near term missions like Resource Prospector Mission and Mars 2020 and follow-ons that may include sample return or site preparation and in-situ resource utilization for a lunar or Martian base.
Development of terrain characterization technology for excavation robots will lead to commercialization opportunities in earthworking equipment. In terrestrial construction, excavation machines must still detect buried hazards and the traversability of soil. Sensing the physical characteristics of both the surface and the subsurface at long-range as in this research will increase the reliability, safety, and efficiency of autonomous terrestrial excavators. Reliable, long-range detection of loose terrain hazards will also lead to commercialization opportunities in military, search-and-rescue, agricultural, and consumer vehicles. In all cases, vehicles would benefit from safeguarding in the presence of non-geometric hazards in off-road situations. Astrobotic could package and sell the technology to vehicle manufactures for inclusion in ground vehicle development.
More »