An airborne volcanic ash detection/characterization system, such as eVADE, will have wide applications in the study of the threat volcanic ash poses to aircraft and for other scientific study of volcanic plumes. Studies carried out with eVADE will allow NASA to refine their models of volcanic ash dispersion based on more data than is available at present. There is potential to combine such a system with MAC's optical air data system and icing and turbulence-detection systems into a unified system that would sense volcanic, turbulence and icing hazards ahead and report airspeed along with air temperature and density routinely. eVADE will have similar utility for non-NASA civil organizations (NOAA, FAA, etc.) and military services (US Air Force, etc.) in conducting scientific studies of volcanic ash characteristics and dispersal. A next generation of eVADE, more compact, would be mountable aboard UAVs to "scout" the airways during major eruptions in order to confirm that commercial and military aircraft cannot fly or give clearance for flights if the concentrations are not judged high enough to be a threat. With enough data, this will allow commercial and military aviation to continue safely during eruptions without widespread disruptions. Future systems could potentially be mounted aboard commercial and military aircraft as a warning system and/or as part of a unified system gathering data on ash concentrations from wherever the eVADE-equipped aircraft are flying, providing even more data for entry into models and for warning purposes. Combined with MAC's optical air data system along with its turbulence-detection and icing hazard warning technologies, a single sensor system may be devised that would detect these three hazards to aviation ahead and report airspeed along with air, temperature and density routinely, providing commercial aircraft with a valuable new optically-based multi-function warning/air data system. This would increase commercial aviation safety and enhance pilot awareness of the air situation ahead of the aircraft.
More »