Skip Navigation
SBIR/STTR

Efficient, high power density hydrocarbon-fueled solid oxide stack system, Phase I

Completed Technology Project

Project Introduction

Precision Combustion, Inc. (PCI) proposes to develop and demonstrate an innovative high power density design for direct internal reforming of regolith off-gases (e.g., methane and high hydrocarbons) within a solid oxide stack. The resulting enhanced heat transfer design offers the potential for higher overall efficiency, simplifies the system, and enables further compactness and weight reduction of the fuel cell system while improving the conditions for long system life. The approach also offers the potential to operate with a wide range of input fuels (i.e., high hydrocarbons as well as various levels of CO2 and water) without forming carbon. At the end of Phase I, a clear path towards a breadboard 1 kW solid oxide system demonstration in Phase II will be described. In a follow-on Phase III, a complete 1 kW system will be developed, demonstrated, and delivered to a NASA facility for demonstration testing in a relevant environment. PCI's integrated reformer/fuel cell system will be much smaller, lighter, more thermally effective and efficient, and less expensive than current technology or prospective alternative structured catalytic reactor technologies. This effort would be valuable to NASA as it would significantly reduce the known spacecraft technical risks and increase mission capability/durability/efficiency while at the same time increasing the TRL of the solid oxide systems for ISRU application. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

^