Potential NASA Commercial Applications: The proposed sensor directly supports NASA Aeronautics Research Mission Directorate (ARMD) research thrusts including vehicle safety, efficiency and carbon emission reduction. The sensor is also directly applicable to a planetary exploration mission to Venus since a high temperature sensor that does not require cooling will significantly reduce payload weight, volume, and complexity. Space propulsion systems, including chemical rockets, nuclear thermal propulsion, launch and station keeping, all exhibit high temperatures and would benefit from the proposed technology. Energy generation systems such as Stirling engines and fuel cells also have high operational temperatures that could be monitored by the proposed sensor. In situ resource utilization systems utilize high temperatures and pressures and would benefit from the proposed technology. Derivative sensor technology could potentially be applied for sensing conditions in thermal protection systems for alloy and ceramic matrix composite structural components.
More »