Skip Navigation
SBIR/STTR

Cellular Load Responsive MLI: Structural In-Air and In-Space LH2 Insulation, Phase II

Active Technology Project

Project Introduction

Advanced space propulsion systems are a critical need for future NASA deep space missions. High thrust engines could revolutionize space exploration. Nuclear Thermal Propulsion ("NTP") is a high thrust/high Isp propulsion technology. Reduced or Zero Boil Off of LH2 propellant for long duration missions is among the critical technology advancements needed for cryogenic propellant storage for both NTP and chemical propulsion. Quest proposes to continue development of Cellular Load Responsive MLI (CLRMLI), an innovative, high performance thermal insulation system. CLRMLI is a novel technology with a cryopumping cellular core containing Load Responsive MLI layers. This new form of insulation uses cryosorption cryopumping to self-evacuate when in contact with cryogenic propellant tanks, allowing high thermal performance in-air and in-space. The Phase I program successfully demonstrated CLRMLI is a feasible and attractive insulation for new launch vehicle platforms and LH2 or LNG powered aircraft. CLRMLI has a measured heat flux of 11.4W/m2, 25X lower than SOFI (vacuum). NASA's Technology Roadmaps call "Zero Boil Off storage of cryogenic propellants for long duration missions" and "Nuclear Thermal Propulsion components and systems" the More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

^