The Hydrosol Concentrator for microgravity (HC-ug) will be an important tool for improving potable water monitoring for microbial contamination on the International Space Station and other NASA spacecraft. As is noted by Yamaguchi et al in a review of current research on microbial monitoring of crewed habitats in space and by Oubre in a comparison study of real-time PCR platforms, rapid environmental microbial monitoring will be required to enable continued success in long-duration space habitation. Per Table 5.2-4 of SSP 50260, International Space Station Medical Operations Requirements Documents, the US On-orbit Segment of the ISS requires analysis of 30 microbial samples in the first 90 days of a mission. After 90 days an additional two samples is required per month. Further, as noted by Yamaguchi, manned missions to Mars, which may be realized within the next two decades, may further increase the need for rapid, reliable microbial monitoring technologies. Because speed of analysis, instrumentation size, and instrumentation and per sample costs are generally tied to sample size, and because required microbial detection limits for drinking water are extremely low, it is likely that concentration will always be a critical component of any detection method appropriate for this application. The proposed HC-ug system holds significant promise for filling this key component of the rapid microbial detection need for NASA for the foreseeable future. In the proposed format, the Hydrosol Concentrator for microgravity (HC-ug) will have direct application to the microbial water monitoring needs of the International Space Station and all national and international space agencies and missions. Further, because small sample sizes are generally a requirement of rapid microbial detection systems, and because required microbial detection limits for drinking water are extremely low, this need is not anticipated to decrease in the near future. In addition to the needs of the space agency community, many components of the technology developed in the proposed project will also have application to earth-based microbial water monitoring applications. The small, zero-power format of the HC-μg system will lend itself to development of fieldable concentration devices for applications such as DoD water monitoring needs in austere and remote environments, and to field sampling and analysis for outbreak investigations in remote locations and when sending samples to a laboratory is not acceptable. Water monitoring in developing countries is an important need that could benefit greatly from low-cost, fieldable kits that allow for delivery of a concentrated sample to rapid detection kits. InnovaPrep is already working to identify aligned opportunities within US DoD, the national and international drinking water and water utilities marketplace, world health applications, and recreational and environmental water applications.
More »