Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Wideband Autonomous Cognitive Radios for Networked Satellites Communications

Completed Technology Project
484 views

Project Description

Wideband autonomous cognitive radios for networked satellites communications, Phase I
There is growing recognition that success in a variety of space mission types can be greatly enhanced by making current communication transceivers and networks evolve towards networked communication systems that are intelligent, self-aware and thus can support greater levels of autonomy. This will be especially relevant as networked clusters of smaller-size satellites, made of CubeSats or microsatellites, are more and more used in place of a single monolithic satellite. The proposed wideband autonomous cognitive radios (WACRs) provide an ideal approach to achieving such autonomous and network-aware communications. The BlueCom team proposes to design and develop WACRs during the Phase I of this project by integrating a real-time reconfigurable radio front-end and a field programmable gate array implemented cognitive engine on to a software-defined radio (SDR) platform. WACRs will have the ability to sense state of the RF spectrum and network and self-optimize its performance in response to the sensed state. The cognitive engine is made of machine-learning aided algorithms to achieve this goal. The SDR platform coupled with a real-time reconfigurable RF front-end will allow the WACR to reconfigure its communication mode as directed by the cognitive engine. This will enable a WACR to overcome communications challenges encountered in space applications including interference, deep fading, waveform agility, delay and very low SNR by dynamically changing its mode of operation. This type of self-aware, autonomous and intelligent communication is what will be required to exploit the full benefits of networked clusters of satellites (e.g. CubeSats) in various mission types including earth monitoring and unmanned autonomous lunar/ planetary exploration. Phase I deliverables will include a detailed design of a WACR system architecture and a cognitive engine as well as development of cognitive algorithms and a real-time reconfigurable RF front-end/antennas. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^