Skip Navigation
Center Innovation Fund: SSC CIF

Cloud Computing for Science Data Processing in Support of Emergency Response Project

Completed Technology Project

Project Description

Cloud Computing Infrastructure
Cloud computing enables users to create virtual computers, each one with the optimal configuration of hardware and software for a job. The number of virtual computers can be increased to process large data sets or reduce processing time. Large scale scientific applications of the cloud, in many cases, are still in development. For example, in the event of an environmental crisis, such as the Deepwater Horizon oil spill, tornadoes, Mississippi River flooding, or a hurricane, up to date information is one of the most important commodities for decision makers. The volume of remote sensing data that is needed to be processed to accurately retrieve ocean properties from satellite measurements can easily exceed a terabyte, even for a small region such as the Mississippi Sound. Often, with current infrastructure, the time required to download, process and analyze the large volumes of remote sensing data, limits data processing capabilities to provide timely information to emergency responders. The use of a cloud computing platform, like NASA's Nebula, can help eliminate those barriers. NASA Nebula was developed as an open-source cloud computing platform to provide an easily quantifiable and improved alternative to building additional expensive data centers and to provide an easier way for NASA scientists and researchers to share large, complex data sets with external partners and the public. Nebula was designed as an Infrastructure-as-a-Service (IaaS) implementation that provided scalable computing and storage for science data and Web-based applications. Nebula IaaS allowed users to unilaterally provision, manage, and decommission computing capabilities (virtual machine instances, storage, etc.) on an as-needed basis through a Web interface or a set of command-line tools. This project demonstrated a novel way to conduct large scale scientific data processing utilizing NASA's cloud computer, Nebula. Remote sensing data from the Deepwater Horizon oil spill site was analyzed to assess changes in concentration of suspended sediments in the area surrounding the spill site. Software for processing time series of satellite remote sensing data was packaged together with a computer code that uses web services to download the data sets from a NASA data archive and distribution system. The new application package was able to be quickly deployed on a cloud computing platform when, and only for as long as, processing of the time series data is required to support emergency response. Fast network connection between the cloud system and the data archive enabled remote processing of the satellite data without the need for downloading the input data to a local computer system: only the output data products are transferred for further analysis. NASA was a pioneer in cloud computing by having established its own private cloud computing data center called Nebula in 2009 at the Ames Research Center (Ames). Nebula provided high-capacity computing and data storage services to NASA Centers, Mission Directorates, and external customers. In 2012, NASA shut down Nebula based on the results of a 5-month test that benchmarked Nebula's capabilities against those of Amazon and Microsoft. The test found that public clouds were more reliable and cost effective and offered much greater computing capacity and better IT support services than Nebula. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.