This research is anticipated to result in advanced coatings for turbine disk components that provide higher temperature capability than is possible without these coatings. These advancements will help turbine disk components survive high temperature operation desired for enhanced thrust and fuel efficiency goals. These advances will potentially benefit all gas turbine engines requiring greater performance and efficiency. In addition, this research specifically supports the goals of NASA's Aeronautics Research Mission Directorate (ARMD) which seeks to expand the boundaries of aeronautical knowledge for the benefit of the Nation and the broad aeronautics community and in particular NASA ARMD's Subsonic Fixed Wing Project which has a goal of conducting long term research in technologies which promote, among other things, higher performance and higher efficiency gas turbine engines.
The development of high temperature turbine disk coatings using DVTI's advanced coatings processing techniques will enable not only new environmentally-protective for use in future military and commercial aircraft platforms, but also new deposition processes to enable affordable coating application onto engines components. DVD coaters are envisioned to be small with low capital costs and tailorable volumes so that small volumes of parts can be deposited at low cost. The soft vacuum required and the high deposition rates also have the potential to facilitate low cost, assembly line like part coating for some geometries. The non line-of-sight capabilities of this approach enable coatings to be applied onto complex components thus expanding their use.
More »