Skip Navigation
SBIR/STTR

Semiconductor Nanomembrane based Flight Sensors and Arrays, Phase I

Completed Technology Project

Project Introduction

The NASA Phase I program would develop and demonstrate semiconductor nanomembrane (NM) based flight sensors and arrays on flexible substrates, using SOI (Silicon on Insulator) silicon NM technique in combination with our pioneering HybridsilTM copolymer nanocomposite materials. Specifically, ultrathin nanostructured sensor skins with integrated interconnect elements and electronic devices that can be applied to new or existing wind tunnel models for skin friction analysis would be developed. NanoSonic has demonstrated the feasibility of NM transducer materials in such sensor skins for the measurement of flow-induced skin friction and pressure. Early experimental results have compared very favorably with data from other sensor gages.Major improvements from the previous Metal RubberTM based sensor include faster response time and less temperature dependence due to the high carrier mobility with the inorganic NMs. During this NASA STTR program, a semiconductor NM based distributed sensor array will be developed (Phase I) and deployed to measure in-flight (Phase II) the surface properties on an airplane wing surface. The properties that will be measured will include shear stress and pressure. With the high frequency response of the NM sensors (100 kHz), it is possible that laminar to turbulence transition can be detected. In phase I, an existing Mach 0.7 wind tunnel will be used to check out the performance of the sensors. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^