Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Physics-Based Radiator Design, Sizing & Weight Estimation Tool for Conceptual Design of More-, Hybrid-, and All-Electric Next Gen Aircraft, Phase I

Completed Technology Project

Project Introduction

Hybrid electric distributed propulsion (HEDP) systems have proven worthy for further consideration by approaching NASA's goals for N+2 and N+3 energy consumption, noise, emission and field length. The thermal management associated with these systems has been recognized as a major challenge to be overcome. ESAero's recent 2012 Phase I SBIR (NNX13CC24P) identified the radiator as a driving component within the thermal management system (TMS). Its design has profound first order effects on the weight, performance, and aerodynamic drag of the TMS, and second order effects on the weight and performance of the overall propulsion system. During the proposed Phase I SBIR, ESAero will upgrade the existing physics-based radiator design, analysis, and weight estimation conceptual design tool by improving the flexibility and fidelity of thermodynamic analysis and predicting the effects of integrating the radiator core within a well-designed duct. ESAero will call upon existing techniques to design a robust tool that more accurately predicts the "as-built" behavior of the component. These modifications are expected to dramatically improve the predicted weight and performance of the radiator and negate nearly all of the radiator drag by employing the Meredith Effect, as seen on the P-51 Mustang. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Target Destinations

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^