Skip Navigation
SBIR/STTR

Tubular Extendible Lock-Out Composite Boom (STELOC), Phase II

Completed Technology Project

Project Introduction

Mass and volume efficient solar arrays are sought by NASA, DoD and commercial space to enable high power missions from 20-50 kW in the near term and eventually up to 350 kW. Currently, the maximum power available from conventional solar arrays, for a given spacecraft, is limited by either the weight or stowage volume of the honeycomb panel substrates. Flexible substrate arrays can enable higher power spacecraft by improving specific power (W/kg) and specific volume (kW/m3) as well as improving the deployed natural frequency. Typical designs for flexible substrate array require a stiff boom mechanism to deploy the array and provide the deployed structure. Heritage flexible substrate arrays have used metallic slit-tube or coilable longeron booms. To be feasible, large, next-generation flexible substrate solar arrays require deployable booms that are more thermally stable than metallic slit-tubes (STEMs), and less expensive and lighter than coilable longeron booms (i.e. AstroMast). To address this need, CTD has developed the Stable Tubular Extendible Lock-Out Composite Boom (STELOC Boom). The STELOC Boom can provide stiffness equivalent to coilable longeron booms with a significantly reduced volume, mass and cost. The Phase I program demonstrated feasibility of the STELOC boom as the deployment actuator and primary structural component of a 15 kW solar array wing. The proposed Phase II program will advance the STELOC Boom to TRL 5 through the design, fabrication and testing of a flight-like Engineering Development Unit. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

^