The technology will have a transformative impact on space exploration, and is directly relevant in addressing the key attributes of autonomy to support NASA missions, stated in the OCT roadmap for Robotics, Tele-Robotics and Autonomous Systems (TA04) as, "the ability for complex decision making, including autonomous mission execution and planning, the ability to self-adapt as the environment in which the system is operating changes, and the ability to understand system state and react accordingly." This work also addresses two space technology grand challenges which aim to enable transformational space exploration and scientific discovery: all access mobility and surviving extreme space environments as well as one grand challenge, telepresence in space, aimed at expanding human presence in space. NASA will be able to use this technology for autonomous exploration and mapping as well as in hostile environments in which telepresence and autonomous control will be employed. Neurala's neuromorphic application has wide-ranging utility in robotics. It makes use of passive sensors, does not require GNSS for navigation, and incorporates training without explicit programming which taken together will reduce development costs and time while simultaneously increasing the robustness of existing robotic systems. The proposed Phase II innovation brings relevance and added benefit to the following market sectors: Defense Unmanned Aerial Systems (UAS), surveillance, patrol, rescue, demining; Business telepresence; Home cleaning; Healthcare remote diagnosis, assistive living; and Agriculture autonomous seeding, crop assessment, wildlife conservation. Neurala will initially focus on a new and emerging teleoperated robots (or telepresence) market as well as the more mature and established UAS sectors. Neurala's technology enables telepresence robots, such as iRobot's RP-VITA, to learn an internal map of rooms, obstacles, and objects of interest. Neurala's solution will also provide collision- and GNSS-free navigation and control-less travel for UAS systems.
More »