Once sufficiently matured, the technology developed in this proposed project will reduce cost and improve safety during SUAS flight operations conducted by NASA Langley in support of its own research objectives. The key component of this technology is an extensible flight controller with built-in autonomous failsafe functionality for a variety of hazards which plague flight operations involving experimental control code and experimental payloads. Examples of hazards which could be autonomously mitigated by the proposed solution include 1) flyaways induced by RF jamming, 2) flyaways induced by poor GPS reception, 3) airspace boundary proximity violation for any reason, 4) loss-of-control due to unsafe attitudes originating from experimental control code, 5) catastrophic loss-of-control due to embedded (experimental) software crash, and 6) flight profile violations due to successful GPS spoofing attacks. Finally, the hardware component of the concept will support development, bench testing, and flight operations with the same hardware, to reduce development costs associated with the porting of software from a development kit to the flight hardware. The benefits to NASA listed above are equally applicable to any organization that engages in any research and development involving SUAS. This includes both the SBC (Prioria Robotics) and the RI (University of Florida), but is not limited to them. Furthermore, the solution benefits groups involved in SUAS pilot training, because the extra failsafe autonomy is more frogiving to new pilots.
More »