Skip Navigation
Center Independent Research & Development: GSFC IRAD

Parametric Amplifiers for Readout of Low-Temperature Detectors

Completed Technology Project

Project Introduction

This project aims to make microwave parametric amplifiers with high gain, large bandwidth, ultra-low noise, and low power dissipation. Our amplifiers are designed to have greatly improved gain characteristics over similar experimental devices.   The amplifiers would enable revolutionary astrophysics instruments with far-infrared photon-counting detectors or high-resolution x-ray microcalorimeters.

Our goal is to build microwave amplifiers with near quantum-limited sensitivity, octave or greater bandwidth, gain > 20 dB for signals of frequency 1 – 10 GHz, and power dissipation less than 1 microwatt at a 100 mK operating temperature, or 1 milliwatt at 4 K. Such amplifiers would find immediate application in efforts to develop far infrared instruments based on Microwave Kinetic Inductance Detectors (MKIDs), or in x-ray microcalorimeters with microwave SQUID amplifier (mSQUID) readout systems.

Existing state-of-the-art broadband HEMT amplifiers used so far for MKID or mSQUID readout have noise temperatures about 1 – 10 K. The noise of HEMTs, while low enough for many applications, limits sensitivity of MKIDs. In addition, the power dissipation of cryogenic HEMTs is not as low as desired in a space-based instrument. The new amplifiers in this project would be of great benefit in high performance instrument concepts involving MKID or mSQUID arrays for astrophysics missions.

More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.