Skip Navigation
SBIR/STTR

Fiber MOPA for Ascends, Phase I

Completed Technology Project

Project Introduction

CO2 sensing using absorption bands near 1570nm is very attractive by taking advantage of the mature fiber-amplifier technology derived from fiber-optic telecom heritage. This necessitates sufficient power scaling in 1.5 micrometer fiber-amplifiers, either in the pulsed-mode, or in the cw-mode for modulation spectroscopy.In this SBIR program we propose the design, optimization, experimental evaluation and prototype development of a high-power,high wall-plug efficiency, 1571.1 nm fiber-amplifier laser transmitter, compatible with multi-line cw intensity-modulated integrated-path differential absorption spectroscopy, with the size, weight and power (SWaP) optimized for airborne and eventual space-qualifiable roadmap for ASCENDS mission. We leverage innovations in high-power 1.5 micrometer fiber-optic technology and fiber-amplifier architecture, while using high-reliability 1.5 micrometer silica-fiber based passive/active components. Our expectation is that at the end of Phase 2, a TRL-6 level hardware can be developed and delivered for an airborne mission, and which is also compatible with a space-flight maturation roadmap. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^