Skip Navigation
SBIR/STTR

Fiber MOPA for Ascends, Phase I

Completed Technology Project

Project Introduction

CO2 sensing using absorption bands near 1570nm is very attractive by taking advantage of the mature fiber-amplifier technology derived from fiber-optic telecom heritage. This necessitates sufficient power scaling in 1.5 micrometer fiber-amplifiers, either in the pulsed-mode, or in the cw-mode for modulation spectroscopy.In this SBIR program we propose the design, optimization, experimental evaluation and prototype development of a high-power,high wall-plug efficiency, 1571.1 nm fiber-amplifier laser transmitter, compatible with multi-line cw intensity-modulated integrated-path differential absorption spectroscopy, with the size, weight and power (SWaP) optimized for airborne and eventual space-qualifiable roadmap for ASCENDS mission. We leverage innovations in high-power 1.5 micrometer fiber-optic technology and fiber-amplifier architecture, while using high-reliability 1.5 micrometer silica-fiber based passive/active components. Our expectation is that at the end of Phase 2, a TRL-6 level hardware can be developed and delivered for an airborne mission, and which is also compatible with a space-flight maturation roadmap. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

A final report document may be available for this project. If you would like to request it, please contact us.

^