Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Low Cost Automated Manufacture of High Efficiency THINS ZTJ PV Blanket Technology (P-NASA12-007)

Completed Technology Project
58 views

Project Description

Low Cost Automated Manufacture of High Efficiency THINS ZTJ PV Blanket Technology (P-NASA12-007)
NASA needs lower cost solar arrays with high performance for a variety of missions. While high efficiency, space-qualified solar cells are in themselves costly, > $250/Watt, there is considerable additional cost associated with the parts and labor needed to integrate the Photovoltaic Assembly. The standard approach has evolved with only minor changes, sacrificing cost because of risk aversion. Integration cost can be as much as double the bare cell cost – i.e. >$500/watt. Dramatic cost savings can be realized through manufacturing engineering of more efficient automated assembly processes. If the design of the Photovoltaic Assembly could be modified to be compatible with conventional and automatable electronic assembly and terrestrial solar panel assembly approaches, there could be considerable cost savings. There are many additional benefits with automation which include higher quality and consistency. This can reduce failures, increase production throughput, speed turnaround, and improve overall reliability. Cost and quality improvements can be realized on both thin and rigid arrays, increasing current capabilities, and enabling future high power missions. The benefits of automation are enhanced by the need for high power generation in support of energy intensive space missions. A 300kW array at $500/W would cost $150M just for the solar cell integrated array panels. A $150/W cell integration cost reduction would translate into savings of $45M, before considering the immediate and substantial benefits in consistency, reliability, and schedule. The Phase I effort demonstrates feasibility of a low cost array using an automated and integrated manufacturing approach, performed on an automation friendly solar cell, verified with environmental testing, and is used to predict array cost for a high power mission. Meeting these technical objectives will demonstrate reduced cost and justify a Phase II SBIR program preparing for a flight experiment. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^