We propose a revolutionary electro-optical (EO) imaging sensor concept that provides a low-mass, low-volume alternative to the traditional bulky optical telescope and focal plane detector array. This imaging sensor concept consists of millions of direct detection white-light interferometers densely packed onto photonic integrated circuits (PICs) to measure the amplitude and phase of the visibility function at spatial frequencies that span the full synthetic aperture.
More »This technology replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies that samples the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then reconstructs an image. This approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., CMOS fabrication). The standard EO payload integration and test process which involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication that substantially reduces associated schedule and cost.
More »Organizations Performing Work | Role | Type | Location |
---|---|---|---|
University of California-Berkeley (Berkeley) | Lead Organization | Academia | Berkeley, California |
Lockheed Martin Inc. | Supporting Organization | Industry | Palo Alto, California |
University of California-Davis (UC Davis) | Supporting Organization | Academia | Davis, California |