Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Wireless SAW Sensor Strain Gauge & Integrated Interrogator Design

Completed Technology Project
704 views

Project Description

Wireless SAW Sensor Strain Gauge & Integrated Interrogator Design
The proposed Wireless, passive, SAW sensor system operates in a multi-sensor environment with a range in excess of 45 feet. This proposed system offers unique features in two (2) important areas. The first is in the development of a new sensor type, a strain gauge that is based on OFC techniques and implemented with the low loss characteristics of SAW Unidirectional transducers. The second is in the design of an integrated interrogator system that has DSP-based embedded signal processing. Interrogator will also be capable of rapidly performing multiple interrogations which can them be used to make ibration measurements or averaged to extend the operational range of the system. This proposal extends the Phase I and previous work in two major areas; developing a SAW strain sensor, and dramatically increasing interrogation range, which is applicable to both the new strain sensors and the previously developed temperature sensors. In order to increase SAW sensor range, sensitivity and accuracy, the most important device parameters were identified and initial investigation begun in Phase I and will be put into practice in Phase II. To reduce SAW sensor loss and minimize multi-transit acoustic echoes, low loss unidirectional studies were initiated. Phase I produced three alternative low-loss approaches that will be evaluated in the Phase II work. Success will lower the insertion loss by approximately 15 dB, and multi-transit echoes are predicted to be less than -40 dB from the main signal; doubling the system range and reducing the sensors self-noise. Advanced coding techniques were investigated in Phase I that have led to longer delay path lengths, and shorter codes with less inter-sensor interference. During Phase II, the interrogator will improve the following critical capabilities: onboard-fully-integrated DSP, extended connectivity options to customer's computer, and rapid interrogation capabilities. This will allow vibration sensing and signal integration. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^