The use of two-phase thermal systems on spacecraft has been greatly hampered by the inability to predict with sufficient confidence their performance at various gravity levels (Earth, Mars, and lunar gravity and low-g). The performance prediction of two-phase systems under these conditions requires a sufficient heat transfer database and reliable models, both of which are not currently available. Although some research in low-gravity adiabatic flows has been performed, very little heat transfer data relevant to advanced space heat exchangers is available and the mechanisms by which heat is removed from the surfaces under varying gravity environments are still unclear. A better understanding of flow boiling and critical heat flux (CHF) in these environments is highly desired for the design of future heat removal equipment in extraterrestrial applications.
More »