Skip Navigation
Center Innovation Fund: GSFC CIF

Conformal Carbon Nanotubes for Stray Light Suppression

Completed Technology Project

Project Introduction

We have developed ultra-black CVD (chemical vapor deposition) and embedded carbon nanotube surface treatments for use in the near UV to far infrared for stray light suppression, near-ideal radiators and calibrators and detector absorbers.  We propose to develop techniques using atomic layer deposition (ALD) and electric field alignment to apply nanotubes to non-flat substrates to broaden their utilization to many additional components for space flight use.

Our objective is to apply CVD and non-CVD carbon nanotubes to complex shapes that numerous scientists have requested for stray light control.  Currently, CVD nanotubes can only be grown on flat surfaces due to limitations in line-of-sight physical vapor deposition techniques such as e-beam evaporation.   For CVD our adhesion and catalyst layers must be applied on the on the component with extreme uniformity to a thickness of 1 to 2 nm for ideal performance.   Then the component must be placed in the thermal reactor furnace flow in a way that allows uniform exposure to the carbon bearing gas.  Our first focus area is to utilize atomic layer deposition (ALD) to apply our adhesion and catalyst layers conforming to the desired substrate surface.  This will allow fabrication of components that are dark on all surfaces instead of just on one surface.

More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

^