A Hypervelocity Asteroid Intercept Vehicle (HAIV) mission architecture, which blends a hypervelocity kinetic impactor with a subsurface nuclear explosion for optimal fragmentation and dispersion of hazardous near-Earth objects (NEOs), has been developed through a 2011 NIAC Phase I study. Despite the uncertainties inherent to the nuclear disruption approach, disruption can become an effective strategy if most fragments disperse at speeds in excess of the escape velocity of an asteroid so that a very small number of fragments impacts the Earth. Thus, the proposed HAIV system will become essential for reliably mitigating the most probable impact threat: NEOs with warning times shorter than 10 years. It offers a potential breakthrough or great leap in mission capabilities for mitigating the impact threat of NEOs. The proposed Phase II study further develops the HAIV-based mission architecture and explores its potential infusion options within NASA and beyond.
More »This technology could be a key asset that simultaneously benefits planetary defense, fundamental solar system science, and space exploration.
More »Organizations Performing Work | Role | Type | Location |
---|---|---|---|
Iowa State University | Lead Organization | Academia | Ames, Iowa |
Goddard Space Flight Center (GSFC) | Supporting Organization | NASA Center | Greenbelt, Maryland |